首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
大气科学   7篇
地球物理   20篇
地质学   48篇
海洋学   7篇
天文学   19篇
综合类   2篇
自然地理   5篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   7篇
  2017年   5篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   4篇
  2011年   10篇
  2010年   7篇
  2009年   7篇
  2008年   7篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1980年   1篇
  1953年   1篇
排序方式: 共有109条查询结果,搜索用时 515 毫秒
51.
We present evidence of a submerged early Holocene landscape off the Blekinge coastline in the Baltic Sea, dating to the Yoldia Sea and Initial Littorina Sea Stages when the water level was lower than at present. 14C dated wood remains obtained by surveillance diving and new archaeological findings in combination with bathymetric analyses and interpolations between other sites across the Baltic Sea were used for refinement of the shoreline displacement history of the region. The new results reveal a Yoldia Sea lowstand level at 20 m b.s.l., a subsequent Ancylus Lake highstand at 3 m a.s.l., and then a period of relatively stable water level at about 4 m b.s.l. during the Initial Littorina Sea Stage, several metres lower than previously concluded. The refined shoreline displacement record was used for palaeo‐reconstructions of the study area during four key periods, the Yoldia Sea lowstand phase, the Ancylus Lake transgression phase, the Ancylus Lake highstand phase and the Initial Littorina Sea lowstand phase, using elevation data and map algebra functions. A flow accumulation algorithm was used for reconstruction of the now submerged prehistoric river network in order to identify areas of high archaeological potential. Our revised shoreline displacement record, and especially its lowstand period during the Initial Littorina Sea Stage around 9500–8500 cal. a BP, raises future demands not only for specific archaeological shallow‐water surveys down to 4 m b.s.l. in the area, but also for a renewed cultural heritage management strategy. The results of this study fill an important gap in the early Holocene part of the shoreline displacement history of Blekinge, contributing to its completion since the deglaciation, which is unique for the Baltic Sea.  相似文献   
52.
53.
Space probes entering planetary atmospheres are used for in situ study of their physical structures. During the entry phase aerodynamic forces exerted on the probe depend on atmospheric density. As a consequence accelerations measured by on-board sensors can be used to derive probe trajectory as well as atmospheric density, pressure and temperature profiles. In this work acceleration data acquired by the Huygens Atmospheric Structure Instrument (HASI) have been used to reconstruct the probe trajectory and the Titan's atmospheric structure from down to of altitude. An accurate six degree of freedom model of Huygens during the entry phase has been developed and a new reconstruction technique based on Kalman filtering is presented. This technique estimates simultaneously the probe trajectory, the attitude profile consistent with measured data and the atmospheric density, pressure and temperature.  相似文献   
54.
Centrifuge models simulating magma emplacement during oblique rifting   总被引:1,自引:0,他引:1  
A series of centrifuge analogue experiments have been performed to model the mechanics of continental oblique extension (in the range of 0° to 60°) in the presence of underplated magma at the base of the continental crust. The experiments reproduced the main characteristics of oblique rifting, such as (1) en-echelon arrangement of structures, (2) mean fault trends oblique to the extension vector, (3) strain partitioning between different sets of faults and (4) fault dips higher than in purely normal faults (e.g. Tron, V., Brun, J.-P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 188, 71–84). The model results show that the pattern of deformation is strongly controlled by the angle of obliquity (α), which determines the ratio between the shearing and stretching components of movement. For α35°, the deformation is partitioned between oblique-slip and normal faults, whereas for α45° a strain partitioning arises between oblique-slip and strike-slip faults. The experimental results show that for α35°, there is a strong coupling between deformation and the underplated magma: the presence of magma determines a strain localisation and a reduced strain partitioning; deformation, in turn, focuses magma emplacement. Magmatic chambers form in the core of lower crust domes with an oblique trend to the initial magma reservoir and, in some cases, an en-echelon arrangement. Typically, intrusions show an elongated shape with a high length/width ratio. In nature, this pattern is expected to result in magmatic and volcanic belts oblique to the rift axis and arranged en-echelon, in agreement with some selected natural examples of continental rifts (i.e. Main Ethiopian Rift) and oceanic ridges (i.e. Mohns and Reykjanes Ridges).  相似文献   
55.
Structural investigations in northwestern Sardinia highlight the occurrence of a regional D2 transpressional deformation related both to NNE–SSW direction of compression and to a NW–SE shear displacement. The deformation is continuous and heterogeneous, showing a northward strain increase, indicated by progressively tighter folds and occurrence of F2 sheath folds. D2 transpression is characterised by the presence of a crustal-scale shear deformation overprinting previous D1 structures, related to nappe stacking and top-to-the-south and southwest thrusting. The L2 prominent stretching lineation points to an orogen-parallel extension and to a change in the tectonic transport from D1 to D2. It is attributed to the position of Sardinia close to the northeastern part of the Cantabrian indenter during the progressive evolution of the Ibero-Armorican Arc. D1 phase developed during initial frontal collision, whereas D2 deformation characterised the progressive effect of horizontal displacement during the increasing curvature of the arc. To cite this article: R. Carosi, G. Oggiano, C. R. Geoscience 334 (2002) 287–294.  相似文献   
56.
The complex development of the northern Crotone Basin, a forearc basin of the Calabrian Arc (Southern Italy), has been documented by sedimentological, stratigraphic and structural analyses. This Mediterranean‐type fault bounded basin consists of small depocentres commonly characterized by a mix of facies that grades from continental to shallow marine. The lower Pliocene infill of the Crotone Basin consists of offshore marls (Cavalieri Marl) that grade upwards into a shallow‐marine to continental succession up to 850 m thick (Zinga Formation). The succession is subdivided into three main stratal units: Zinga 1, Zinga 2, Zinga 3 bounded by major unconformities. The Zinga 1 stratal unit grades from the Cavalieri Marl to deltaic and shoreface deposits, the latter organized into several stacked progradational wedges that show spectacular thickness changes and progressive unconformities related to salt‐cored NE‐trending growth folds and listric normal faults. The Zinga 2 stratal unit records a progressive and moderate deepening of the area, marked by fluvial sedimentation at the base, followed by lagoonal deposits and by a stacking of mixed bioclastic and siliciclastic shoreface units, organized into metre‐scale high‐frequency cycles. Deposition was controlled by NE‐trending synsedimentary normal faults that dissected the basin into a series of half‐grabens. Hangingwall stratigraphic expansion was compensated by footwall condensed sedimentation. The extensional tectonic regime continued during sedimentation of the Zinga 3 stratal unit. Deposition confined within structural lows during a generalized transgressive phase led to local enhancement of tidal flows and development of sand‐wave trains. The tectonic setting testifies the generalized structural domain of a forearc region. The angular unconformity at the top of the Zinga 3 stratal unit is regional, and marks the activation of a large‐scale tectonic phase linked to strike‐slip movements.  相似文献   
57.
The contact between the Silurian black phyllite and the Cambro–Ordovician underlying rocks has been investigated over different tectonic units, affected by green-schist facies metamorphism, in the inner nappe zone of the Sardinia Variscides. In spite of strain and metamorphism, the field work highlighted the occurrence of diamictic sediments. In the Canaglia Tectonic Unit the diamictite consists of dark, massive metamorphic claystone bearing chamositic ooliths, chamositic nodules and millimetre to centimetre sized clasts, dispersed, or gathered in clusters, within the muddy matrix. In the Argentiera Tectonic Unit the diamictite consists of angular clasts, ranging in size from few millimetres to several decimetres, scattered within a finely laminated black sericitic meta-argillite. Field data, textural and compositional analyses suggest a glacio-marine environment for the formation of the diamictites.

The Canaglia diamictite deposited in a protected, glacial-influenced, shore. Compositionally it can be defined as ironstone; in the Upper part it hosts a horizon of clast-supported conglomeratic hard ironstone, mostly made of magnetite, which testifies for sub-aerial reworking. The source of the iron is to be related to local, glacio-eustatic driven, emergence of Upper Ordovician alkaline mafic volcanics. These are widespread in the uppermost Ordovician of the Canaglia Unit, possibly linked to the rifting stage that invested the north Gondwana margin, before the uppermost Ordovician–early Silurian sea level rise.

The Argentiera diamictite deposited beyond the iron-rich diamictite in the outer euxinic shelf that was reached by rain out of rafted debris.  相似文献   

58.
Modelling the extension of heterogeneous hot lithosphere   总被引:2,自引:0,他引:2  
The consequences of weak heterogeneities in the extension of soft and hot lithosphere without significant previous crustal thickening has been analysed in a series of centrifuge models. The experiments examined the effects of i) the location of heterogeneities in the ductile crust and/or in the lithospheric mantle, and ii) their orientation, perpendicular or oblique to the direction of bulk extension. The observed deformation patterns are all relevant to the so-called “wide rifting” mode of extension. Weak zones located in the ductile crust exert a more pronounced influence on localisation of deformation in the brittle layer than those located in the lithospheric mantle: the former localise faulting in the brittle crust whereas the latter tend to distribute faulting over a wider area. This latter behaviour depends in turn upon the decoupling provided by the ductile crust. Localised thinning in the brittle crust is accompanied by ductile doming of both crust and mantle. Domains of maximum thinning in the brittle crust and ductile crust and mantle are in opposition. Lateral differences in brittle crust thinning are accommodated by lateral flow in the ductile crust and mantle. This contrasts with “cold and strong” lithospheres whose high strength sub-Moho mantle triggers a necking instability at the lithosphere-scale. This also differs from the extension of thickened hot and soft lithospheres whose ductile crust is thick enough to give birth to metamorphic core complexes. Thus, for the given lithospheric rheology, the models have relevance to backarc type extensional systems, such as the Aegean and the Tyrrhenian domains.  相似文献   
59.
Bauxite deposits are widespread in NW Sardinia. They formed during the middle Cretaceous, in consequence of a period of emergence of the Mesozoic carbonate shelf. In the Nurra area the geometries derived by the Middle Cretaceous tectonic phases controlled the ore typologies. Two bauxite profiles, laying on different bedrocks, were sampled. The bauxitization proceeded from the surface downward, with the accumulation of Al2O3 and residual ‘immobile’ elements (Al, Ti, HFSE), and corresponding mobility and loss of SiO2 and Fe2O3. Epigenetic kaolinite formed close to faults and joints, probably as a result of silicification, introduced by low temperature hydrothermal solutions. Rare earth elements, especially LREE, are concentrated in Fe-rich bauxite horizons, probably due to scavenging by goethite. REE-enrichment is not observed in the boehmite-rich horizons. Very high REE contents are observed in a Fe-depleted horizon due to the occurrence of REE accessory minerals, probably of the bastnäsite group. Conservative indices, including TiO2/Al2O3 and Ti/Cr ratios, and Eu anomalies (Eu/Eu*), suggest that the deposits formed by weathering of sediments derived from mafic rocks of the Hercynian basement. This, in turn, implies that the basement was exposed during middle Cretaceous.  相似文献   
60.
The late Hercynian tectonic evolution of the Calabria crust is characterized by peak metamorphic conditions up to 800 °C and 1000 MPa, and coeval mid‐crustal granitoid emplacement at 304–300 Ma. To check if a post‐collisional extensional framework, similar to that of other Hercynian massifs, can explain petrologic data, we model the pressure–temperature evolution of the crust during extension following granitoid emplacement. Model parameters are constrained by petrologic, geochemical and structural data. Computed PT paths are characterized by nearly isothermal decompression followed by isobaric cooling, which show a good fit to petrologic PT paths for duration of extension between 5 and 10 Ma. The model results, therefore, support an interpretation of the magmatic and metamorphic evolution of the Calabria crust in terms of the late Hercynian extension. In this framework, slab break‐off is a reasonable explanation for the common evolution of the southern European Hercynian massifs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号